

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Determination of Enantiomeric Compositions by Transient Absorption Spectroscopy using proteins as chiral selectors

Ignacio Vayá, Carlos J. Bueno, M. Consuelo Jiménez* and Miguel A. Miranda*

[a] Departmento de Quimica-Instituto de Tecnologia Quimica UPV-CSIC Universidad Politecnica de Valencia Camino de Vera s/n, Apdo 46022, Valencia, Spain

[b] Departamento de Quimica-Instituto de Tecnologia Quimica UPV-CSIC Departmento de Quimica Instituto de Tecnologia Quimica UPV-CSIC Universidad Politecnica de Valencia Camino de Vera S7N, Apdo 46022, Valencia, Spain

Index of Supporting Information

Supporting Tables

Table S1. Percentage of free, site I- and site II-bound (S)- and (R)-FBPMe in the presence of PSA at different FBPMe/PSA ratios.

Table S2. Percentage of free, site I- and site II-bound (S)- and (R)-FBP in the presence of PSA at different FBP/PSA ratios.

Table S3. Optical rotation (O.R.), standard deviation (σ) and % coefficient of variance (C.V.) of mixtures containing different percentages of (*S*)- and (*R*)-FBP in MeCN solutions at 2.5 × 10⁻⁵ M total concentration.

Supporting Figures

Figure S1. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*S*)-FBPMe/PSA at different molar ratios. Normalized decays monitored at 360 nm

Figure S2. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBPMe/PSA at different molar ratios. Normalized decays monitored at 360 nm

Figure S3. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBPMe/PSA and (*S*)-FBPMe/PSA at 1:1 molar ratio. Normalized decays monitored at 360 nm

Figure S4. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*S*)-FBP/PSA at different molar ratios. Normalized decays monitored at 360 nm

Figure S5. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBP/PSA at different molar ratios. Normalized decays monitored at 360 nm

Figure S6. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBP/PSA and (*S*)-FBP/PSA at 1:1 molar ratio. Normalized decays monitored at 360 nm

Figure S7. LFP-determined against known real percentages of (*S*)-FBP in the presence of BSA, together with the linear fit of the experimental points.

Figure S8. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*S*)-NPX/(*R*)-NPX/HSA at 0.5:0.5:1 molar ratio (normalized decays monitored at 420 nm), lifetimes, preexponential factors for the separate enantiomers, and real *vs.* LFP-determined percentages of (*S*)-NPX.

Figure S9. Decays at 360 nm of the LFP experiment ($\lambda_{exc} = 266$ nm) for racemic FBP/BSA and Froben®/BSA, compared with the fitting for a 50:50 enantiomeric composition.

Figure S10. ¹H-RMN 300 MHz spectrum of Froben 50 ® in CD₃OD.

Figure S11. ¹H-RMN 300 MHz spectrum of racemic FBP (10 mg in 0.7 ml of CDCl₃).

Figure S12. ¹NMR Spectrum (300 MHz) of the amount of FBP required for the LFP experiment (1 10^{-7} mol) in 0.7 mL of CDCl₃.

Figure S13. HPLC-determined compositions of different mixtures of (S)- and (R)-FBP against known real values.

Figure S14. UV absorption spectra of $(2.5 \times 10^{-5} \text{ M})$ solutions of (*S*)-FBPMe, HSA and 1:1 (*S*)-FBPMe/HSA in PBS.

Figure S15. Emission spectra ($\lambda_{exc} = 266$ nm) of isoabsorptive solutions (A = 0.2) of (*S*)-FBPMe, HSA and 1:1 (*S*)-FBPMe/HSA in PBS.

Supporting Tables

	t (µs)	FBPMe/PSA Molar ratios					
		1:1.25	1:1	1.5:1	2:1	3:1	4:1
(R)-FBPMe	$\tau_{FREE} = 1.5$	-	-	22	30	44	57
	$\tau_{SITE-I} = 95.3$	75	77	57	50	31	22
	$\tau_{SITE-II}=9.5$	25	23	21	20	25	21
(S)-FBPMe	$\tau_{FREE} = 1.5$	-	-	27	33	55	59
	$\tau_{SITE\text{-}I} = 41.2$	53	53	35	33	21	18
	$\tau_{SITE-II} = 6.0$	47	47	38	34	24	23

Table S1. Percentage of free, site I- and site II-bound (S)- and (R)-FBPMe in the presence of PSA at different FBPMe/PSA ratios.

Table S2. Percentage of free, site I- and site II-bound (S-) and (R)-FBP in the presence of PSA at different FBP/PSA ratios.

	t (µs)	FBP/PSA Molar ratios					
		1:1.25	1:1	1.5:1	2:1	3:1	4:1
(<i>R</i>)-FBP	$\tau_{FREE} = 1.5$	-	-	26	42	60	75
	$\tau_{SITE\text{-}I}=6.8$	44	45	30	24	14	10
	$\tau_{SITE\text{-}II} = 45.0$	56	55	44	36	26	15
(S)-FBP	$\tau_{FREE} = 1.5$	-	-	33	50	66	75
	$\tau_{SITE\text{-}I}=6.5$	44	44	30	20	10	10
	$\tau_{SITE\text{-}II} = 44.5$	56	56	37	30	24	14

Table S3. Optical rotation (O.R.), standard deviation (σ) and % coefficient of variance (C.V.) of mixtures containing different percentages of (*S*)- and (*R*)-FBP in MeCN solutions at 2.5×10^{-5} M total concentration.

% (S)-FBP	O.R. ^{a,b}	s ^b	C.V. ^b %
100	-0,0031	0,0048	-152
90	-0,0014	0,0056	-393
80	0,0012	0,0031	260
70	-0,0020	0,0033	-167
60	0,0017	0,0034	198
50	-0,0020	0,0014	-67
40	0,0023	0,0014	62
30	0,0035	0,0029	84
20	-0,0010	0,0045	-446
10	-0,0023	0,0025	80
0	-0,0026	0,0026	-102

^a Measured in a JASCO polarimeter P-1030 with a quartz cell of 10 cm pathway. ^b No reliable values for the were obtained, indicating that polarimetry does not provide accurate results in the same range of minute concentrations of the LFP based method.

Supporting Figures

Figure S1. Laser flash photolysis ($\lambda_{exc} = 266$ nm) of (*S*)-FBPMe (black) and (*S*)-FBPMe/PSA at different molar ratios, 4:1 (red), 2:1 (blue) and 1:1.25 (cyan). Normalized decays monitored at 360 nm. The concentration of (*S*)-FBPMe was $2.5 \cdot 10^{-5}$ M in all cases. Inset: Traces obtained at longer decay times.

Figure S2. Laser flash photolysis ($\lambda_{exc} = 266$ nm) of (*R*)-FBPMe (black) and (*R*)-FBPMe/PSA at different molar ratios, 4:1 (red), 2:1 (blue) and 1:1.25 (cyan). Normalized decays monitored at 360 nm. The concentration of (*R*)-FBPMe was 2.5 $\cdot 10^{-5}$ M in all cases. Inset: Traces obtained at longer decay times.

Figure S3. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBPMe/PSA (black) and (*S*)-FBPMe/PSA (blue) at 1:1 molar ratio, showing a high stereodifferentiation in the triplet lifetimes. Normalized decays monitored at 360 nm. The concentration of FBPMe was 2.5 $\cdot 10^{-5}$ M in all cases. Fittings are shown in red. Inset: Traces obtained at longer decay times

Figure S4. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*S*)-FBP (black) and (*S*)-FBP/PSA at different molar ratios, 4:1 (red), 2:1 (blue) and 1:1.25 (cyan). Normalized decays monitored at 360 nm. The concentration of (*S*)-FBP was $2.5 \cdot 10^{-5}$ M in all cases.

Figure S5. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBP (black) and (*R*)-FBP/PSA at different molar ratios, 4:1 (red), 2:1 (blue) and 1:1.25 (cyan). Normalized decays monitored at 360 nm. The concentration of (*R*)-FBP was $2.5 \cdot 10^{-5}$ M in all cases.

Figure S6. Laser flash photolysis ($\lambda_{exc} = 266 \text{ nm}$) of (*R*)-FBP/PSA (black) and (*S*)-FBP/PSA (blue) at 1:1 molar ratio, showing no stereodifferentiation in the triplet lifetimes. Normalized decays monitored at 360 nm. The concentration of FBP was $2.5 \cdot 10^{-5}$ M in all cases. Fittings are shown in red.

Figure S7. LFP-determined against known real percentages of (*S*)-FBP in the presence of BSA, together with the linear fit of the experimental points.

Figure S8. Laser flash photolysis ($\lambda_{exc} = 266$ nm) of (*S*)-NPX/(*R*)-NPX/HSA at 0.5:0.5:1 molar ratios. Normalized decay monitored at 420 nm. The total concentration of NPX was 4.10⁻⁵ M. From the lifetimes and preexponential factors found for the separate enantiomers, real *vs.* LFP-determined percentages of (*S*)-NPX were compared for three (*S*)/(*R*) mixtures (table on the right).

Figure S9. Decays at 360 nm of the LFP experiment ($\lambda_{exc} = 266$ nm) for racemic FBP/BSA and Froben®/BSA, compared with the fitting for a 50:50 enantiomeric composition. A tablet of Froben® 50 (Abbott Laboratories Limited) weights 200 mg; 50 of them correspond to racemic flurbiprofen, while the other 150 are different excipients: glucose, sacarose, lactose, maize starch, povidone, magnesium estearate, estearic acid, titanium dioxide, sandarac varnish, carnauba wax, colloidal silicon dioxide, black ink, etc.

Figure S10. ¹H-RMN 300 MHz spectrum of Froben 50 \circledast in CD₃OD. A tablet was dissolved in 80 mL of CH₃OH, filtered, and the solvent evaporated in vacuo to afford a white powder. Then, 10 mg of this solid were dissolved in CD₃OD (0.7 mL), and the resulting solution was submitted to NMR spectroscopy.

Figure S11. ¹H-RMN 300 MHz spectrum of racemic FBP (10 mg in 0.7 ml of $CDCl_3$). for comparison with Froben \circledast .

Figure S12. ¹NMR Spectrum (300 MHz) of the amount of FBP required for the LFP experiment (1 10^{-7} mol) in 0.7 mL of CDCl₃. No signals of the drug (see magnifications in the insets) were detected at this concentration.

Figure S13. HPLC-determined compositions of different mixtures of (*S*)- and (*R*)-FBP against known real values, together with the linear fit of the experimental points. The same amount of FBP required for the LFP experiment ($1 \ 10^{-7}$ mol) was dissolved in 300 μ L of *tert*-butyl methyl ether. An aliquot of 200 μ L of this solution was injected in a HPLC system (reverse phase) provided with a chiral column (Kromasil 100 TBB 5 μ m 25 cm ×1 cm). The eluent employed was *tert*-butyl methyl ether/hexane/acetic acid (60:40:0.1) with a flux of 1.5 mL/min. The detection system was a chiral polarimeter (JASCO OR-1590). The time to record a full chromatogram was *ca*. 25 min.

Figure S14. UV absorption spectra of $(2.5 \times 10^{-5} \text{ M})$ solutions of (*S*)-FBPMe, HSA and 1:1 (*S*)-FBPMe/HSA in PBS. In the complex, at 266 nm, 17% of the incident light is absorbed by (*S*)-FBPMe, while 83% is absorbed by the protein.

Figure S15. Emission spectra ($\lambda_{exc} = 266$ nm) of isoabsorptive solutions (A = 0.2) of (*S*)-FBPMe, HSA and 1:1 (*S*)-FBPMe/HSA in PBS. Emission of the complex shows a good matching with the calculations from the independent emissions of the two components, taking into account the relative absorbance.